Calculator search results

Formula
Calculate the value
$2 \left( -3 \right) ^{ 3 } +4 \left( 5 \right) -2 \left( 4 \right) - \left( -3+8 \right) ^{ 2 }$
$- 67$
Calculate the value
$2 \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 3 } } + 4 \times 5 - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
 Move the (-) sign forward as it does not disappear if the (-) sign is powered to an odd number of times 
$2 \times \left ( \color{#FF6800}{ - } 3 ^ { 3 } \right ) + 4 \times 5 - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \right ) + 4 \times 5 - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
 Simplify the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 27 } + 4 \times 5 - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 27 } + 4 \times 5 - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
 Multiply $- 2$ and $27$
$\color{#FF6800}{ - } \color{#FF6800}{ 54 } + 4 \times 5 - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
$- 54 + \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
 Multiply $4$ and $5$
$- 54 + \color{#FF6800}{ 20 } - 2 \times 4 - \left ( - 3 + 8 \right ) ^ { 2 }$
$- 54 + 20 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } - \left ( - 3 + 8 \right ) ^ { 2 }$
 Multiply $- 2$ and $4$
$- 54 + 20 \color{#FF6800}{ - } \color{#FF6800}{ 8 } - \left ( - 3 + 8 \right ) ^ { 2 }$
$- 54 + 20 - 8 - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) ^ { 2 }$
 Add $- 3$ and $8$
$- 54 + 20 - 8 - \color{#FF6800}{ 5 } ^ { 2 }$
$- 54 + 20 - 8 - \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
 Calculate power 
$- 54 + 20 - 8 - \color{#FF6800}{ 25 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 54 } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ - } \color{#FF6800}{ 25 }$
 Calculate the sum or the difference 
$\color{#FF6800}{ - } \color{#FF6800}{ 67 }$
Solution search results