Symbol

# Calculator search results

Formula
Find the sum or difference of the fractions
$2 \dfrac{ 2 }{ 3 } + \dfrac{ 5 }{ 8 } -1 \dfrac{ 11 }{ 12 }$
$\dfrac { 11 } { 8 }$
Find the sum or difference of the fractions
$\color{#FF6800}{ 2 \dfrac { 2 } { 3 } } + \dfrac { 5 } { 8 } - 1 \dfrac { 11 } { 12 }$
 Convert mixed number into improper fraction 
$\color{#FF6800}{ \dfrac { 8 } { 3 } } + \dfrac { 5 } { 8 } - 1 \dfrac { 11 } { 12 }$
$\dfrac { 8 } { 3 } + \dfrac { 5 } { 8 } \color{#FF6800}{ - } \color{#FF6800}{ 1 \dfrac { 11 } { 12 } }$
 Convert mixed number into improper fraction 
$\dfrac { 8 } { 3 } + \dfrac { 5 } { 8 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 23 } { 12 } }$
$\dfrac { 8 } { \color{#FF6800}{ 3 } } + \dfrac { 5 } { \color{#FF6800}{ 8 } } - \dfrac { 23 } { \color{#FF6800}{ 12 } }$
 The smallest common multiple in denominator is $24$
$\dfrac { 8 } { \color{#FF6800}{ 3 } } + \dfrac { 5 } { \color{#FF6800}{ 8 } } - \dfrac { 23 } { \color{#FF6800}{ 12 } }$
$\dfrac { 8 } { 3 } + \dfrac { 5 } { 8 } - \dfrac { 23 } { 12 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 8 \times \color{#FF6800}{ 8 } } { 3 \times \color{#FF6800}{ 8 } } + \dfrac { 5 \times \color{#FF6800}{ 3 } } { 8 \times \color{#FF6800}{ 3 } } - \dfrac { 23 \times \color{#FF6800}{ 2 } } { 12 \times \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ \dfrac { 8 \times 8 } { 3 \times 8 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 \times 3 } { 8 \times 3 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 23 \times 2 } { 12 \times 2 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 64 } { 24 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 15 } { 24 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 46 } { 24 } }$
$\color{#FF6800}{ \dfrac { 64 } { 24 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 15 } { 24 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 46 } { 24 } }$
 Since the denominator is the same as $24$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 64 + 15 - 46 } { 24 } }$
$\dfrac { \color{#FF6800}{ 64 } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 46 } } { 24 }$
 Calculate the sum or the difference 
$\dfrac { \color{#FF6800}{ 33 } } { 24 }$
$\color{#FF6800}{ \dfrac { 33 } { 24 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ \dfrac { 11 } { 8 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture