# Calculator search results

Formula
Multiply two numbers
Find the number of divisors
Do prime factorization
$180 \times 15$
$2700$
Multiply two numbers
$\color{#FF6800}{ 180 } \color{#FF6800}{ \times } \color{#FF6800}{ 15 }$
 Multiply $180$ and $15$
$\color{#FF6800}{ 2700 }$
$36$
Find the number of divisors
$\color{#FF6800}{ 180 } \color{#FF6800}{ \times } \color{#FF6800}{ 15 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
$2 ^ { 2 } \times 3 ^ { 2 } \times \color{#FF6800}{ 3 } \times 5 \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 3 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5$
 Add $2$ and $1$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 3 } } \times 5 \times 5$
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5$
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 36 }$
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 180 } \times 15$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 } \times 15$
$2 ^ { 2 } \times 3 ^ { 2 } \times 5 \times \color{#FF6800}{ 15 }$
 Represents an integer as a product of decimal numbers 
$2 ^ { 2 } \times 3 ^ { 2 } \times 5 \times \color{#FF6800}{ 3 } \times \color{#FF6800}{ 5 }$
$2 ^ { 2 } \times 3 ^ { 2 } \times \color{#FF6800}{ 3 } \times 5 \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 3 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5$
 Add $2$ and $1$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 3 } } \times 5 \times 5$
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5$
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times 3 ^ { 3 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$2 ^ { 2 } \times 3 ^ { 3 } \times 5 ^ { \color{#FF6800}{ 2 } }$
Solution search results