qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Multiply two numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
Organize using the law of exponent
Answer
circle-check-icon
$18 \times 18$
$324$
Multiply two numbers
$\color{#FF6800}{ 18 } \color{#FF6800}{ \times } \color{#FF6800}{ 18 }$
$ $ Multiply $ 18 $ and $ 18$
$\color{#FF6800}{ 324 }$
$15$
Find the number of divisors
$\color{#FF6800}{ 18 } \color{#FF6800}{ \times } \color{#FF6800}{ 18 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Add $ 2 $ and $ 2$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 15 }$
$1 , 2 , 3 , 4 , 6 , 9 , 12 , 18 , 27 , 36 , 54 , 81 , 108 , 162 , 324$
Find all divisors
$\color{#FF6800}{ 18 } \color{#FF6800}{ \times } \color{#FF6800}{ 18 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Add $ 2 $ and $ 2$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 12 } , \color{#FF6800}{ 18 } , \color{#FF6800}{ 27 } , \color{#FF6800}{ 36 } , \color{#FF6800}{ 54 } , \color{#FF6800}{ 81 } , \color{#FF6800}{ 108 } , \color{#FF6800}{ 162 } , \color{#FF6800}{ 324 }$
$2 ^ { 2 } \times 3 ^ { 4 }$
Organize using the law of exponent
$\color{#FF6800}{ 18 } \times 18$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times 18$
$2 \times 3 ^ { 2 } \times \color{#FF6800}{ 18 }$
$ $ Represents an integer as a product of decimal numbers $ $
$2 \times 3 ^ { 2 } \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Add $ 2 $ and $ 2$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 4 } }$
$18 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 18 } \times 18$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } } \times 18$
$18 ^ { 1 } \times \color{#FF6800}{ 18 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$18 ^ { 1 } \times \color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$18 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$18 ^ { \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo