qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Multiply two numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
Organize using the law of exponent
Answer
circle-check-icon
$18 \times 18 =$
$324$
Multiply two numbers
$\color{#FF6800}{ 18 } \color{#FF6800}{ \times } \color{#FF6800}{ 18 }$
$ $ Multiply $ 18 $ and $ 18$
$\color{#FF6800}{ 324 }$
$15$
Find the number of divisors
$\color{#FF6800}{ 18 } \color{#FF6800}{ \times } \color{#FF6800}{ 18 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Add $ 2 $ and $ 2$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 15 }$
$1 , 2 , 3 , 4 , 6 , 9 , 12 , 18 , 27 , 36 , 54 , 81 , 108 , 162 , 324$
Find all divisors
$\color{#FF6800}{ 18 } \color{#FF6800}{ \times } \color{#FF6800}{ 18 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Add $ 2 $ and $ 2$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 12 } , \color{#FF6800}{ 18 } , \color{#FF6800}{ 27 } , \color{#FF6800}{ 36 } , \color{#FF6800}{ 54 } , \color{#FF6800}{ 81 } , \color{#FF6800}{ 108 } , \color{#FF6800}{ 162 } , \color{#FF6800}{ 324 }$
$2 ^ { 2 } \times 3 ^ { 4 }$
Organize using the law of exponent
$\color{#FF6800}{ 18 } \times 18$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times 18$
$2 \times 3 ^ { 2 } \times \color{#FF6800}{ 18 }$
$ $ Represents an integer as a product of decimal numbers $ $
$2 \times 3 ^ { 2 } \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 2 } \times 3 ^ { 2 }$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Add $ 2 $ and $ 2$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 4 } }$
$18 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 18 } \times 18$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } } \times 18$
$18 ^ { 1 } \times \color{#FF6800}{ 18 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$18 ^ { 1 } \times \color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 18 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$18 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$18 ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-
orwhat genesalixations do you Se0 $w$ 
following multiplication paoblems $\right)$ 
times $18\left(30+2\right)$ $x18$ $08$ 5 times 
$18\left(50+3\right)\times 18=7$
10th-13th grade
Algebra
search-thumbnail-.Complete the $10||0yylny$ 
$\left(1\right)$ $6$ times $16=6$ times $10+6$ fimes 
$\left(11\right)$ $7$ times $14=70+7$ times 
$\left(111\right)$ $3$ times $12=304$ 
$\left(1y\right)$ $5$ times $15=504$ 
$\left(y\right)$ $8$ times $18=804$ 
. Find the
10th-13th grade
Other
search-thumbnail-6 times $16=6$ times $10+6$ times 
$\vec{p} $ times $14=70+7$ times 
3times $12=30+$ 
$5$ 5 times $15=50+$ 
0 $8$ 8 times $18=80+$
10th-13th grade
Other
search-thumbnail-
(v) 8 times $18=80+$ 
2. Find the $ans$ $0rs:$ $\left(11\right)7$ times $17=$ (iii) 4 times $1B=$ 
0 9 times $15=$ 
(iv) 3 times $19=$ (v) 2 times $11=$ (vi) 5 times $14=$ 
(vii) 8 times $13=$ $111\right)$ $\left(v^{.}$ 6 times $16=$ $\left(1\times \right)$ $5$ times $12=$ 
3. Fill in the $blanks$ 
(a) 5 times 12 %3D (b) times 11 88 

(c) times # 162 (d) 7 times 19 %%33D D $100$ 
(e) times 6. # 84 (f) 5 times 0 0%3D 52 
(9) 9 times $11$ 135 (h) 4 times
10th-13th grade
Other
search-thumbnail-(V) 
2. Find the $ansMer5$ 
$\left(1\right)9$ times $15=$ $\left(11\right)$ $7$ times $17=$ (iii) 4 times 18 = 
(iv) 3 times $19=$ $\left(y\right)2$ times $11=$ (vi) 5 times $44=$ 
(vii) 8 times $13=$ $\left(M1\right)$ 6 times $16=$ $\left(1\times \right)$ $5$ times $12=$ 
3. Fill in the $blanks$ 
(a) 5 times 12 I3I (b) times 11 88 
(c) times 162 (d) 7 times 19 $\bar{8} $ 
(e) times 6. 84 (f) 5 times $100$ 
(g) 9 times %3D 135 (h) 4. times
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo