$\color{#FF6800}{ 17 } \color{#FF6800}{ \times } \color{#FF6800}{ 17 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 17 } \color{#FF6800}{ \times } \color{#FF6800}{ 17 }$
$\color{#FF6800}{ 17 } \times 17$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 1 } } \times 17$
$17 ^ { 1 } \times \color{#FF6800}{ 17 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$17 ^ { 1 } \times \color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$17 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$17 ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 2 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 17 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 17 } , \color{#FF6800}{ 289 }$