Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Find the number of divisors
Answer
See the solving process
List all divisors
Answer
See the solving process
Rewrite a number
Answer
See the solving process
$2$
Find the number of divisors
$\color{#FF6800}{ 163 }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 2 }$
$1 , 163$
Find all divisors
$\color{#FF6800}{ 163 }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 163 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 163 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 163 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 163 } ^ { \color{#FF6800}{ 1 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 163 }$
$1.63 \times 10 ^ { 2 }$
Rewrite in the scientific numeral system
$\color{#FF6800}{ 163 }$
$ $ Rewrite in the scientific numeral system $ $
$\color{#FF6800}{ 1.63 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 2 } }$
Solution search results
$\left(x^{2}-16\times +63=0\right)$
10th-13th grade
Other
Check solution
Frackional part of $\left(1b2=$
10th-13th grade
Other
Check solution
Fractional part of $\left(1b8=$
7th-9th grade
Other
Check solution
$\left($ $xx\right)$ $1$ $\left(1y$ $64x^{3}$ $64x^{3}-125z^{3}$ $4x-5z=16$ 3 $xz=12$ $3$ $0$
10th-13th grade
Other
Check solution
$x^{2}+10x+15=|$ $\left($ $x-2$ $x-1$ $x^{-+}$ $x+1\square $ $x+5$
10th-13th grade
Other
Check solution
$...$ $\left(111\right)$ $cot^{-1}\left(\dfrac {4} {3}\right)-tan^{-1}\left(\dfrac {5} {12}\right)=cos^{-1}\left(\dfrac {63} {65}\right)$
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com