Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$16-n ^{ 2 }$
$- n ^ { 2 } + 16$
Organize polynomials
$\color{#FF6800}{ 16 } \color{#FF6800}{ - } \color{#FF6800}{ n } ^ { \color{#FF6800}{ 2 } }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ - } \color{#FF6800}{ n } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$- \left ( n - 4 \right ) \left ( n + 4 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 16 } \color{#FF6800}{ - } \color{#FF6800}{ n } ^ { \color{#FF6800}{ 2 } }$
 Factorize to use the polynomial formula of sum and difference 
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ n } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ n } \right )$
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ n } \right ) \left ( 4 - n \right )$
 Organize the expression 
$\left ( \color{#FF6800}{ n } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( 4 - n \right )$
$\left ( n + 4 \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ n } \right )$
 Expand the expression 
$\left ( n + 4 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ n } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$\left ( n + 4 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ n } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
 Bind the expressions with the common factor $- 1$
$\left ( n + 4 \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ n } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right )$
$\left ( \color{#FF6800}{ n } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ n } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right )$
 Sort the factors 
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ n } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ n } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture