Symbol

Calculator search results

Formula
Multiply two numbers
Find the number of divisors
List all divisors
Do prime factorization
$16 \times 20$
$320$
Multiply two numbers
$\color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ 20 }$
 Multiply $16$ and $20$
$\color{#FF6800}{ 320 }$
$14$
Find the number of divisors
$\color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ 20 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 5$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } \times 5$
$2 ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } \times 5$
 Add $4$ and $2$
$2 ^ { \color{#FF6800}{ 6 } } \times 5$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 14 }$
$1 , 2 , 4 , 5 , 8 , 10 , 16 , 20 , 32 , 40 , 64 , 80 , 160 , 320$
Find all divisors
$\color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ 20 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 5$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } \times 5$
$2 ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } \times 5$
 Add $4$ and $2$
$2 ^ { \color{#FF6800}{ 6 } } \times 5$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
 List divisors of factors 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
 Find all divisors by combining factors which is possible for the reduction of fraction 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 8 } , \color{#FF6800}{ 10 } , \color{#FF6800}{ 16 } , \color{#FF6800}{ 20 } , \color{#FF6800}{ 32 } , \color{#FF6800}{ 40 } , \color{#FF6800}{ 64 } , \color{#FF6800}{ 80 } , \color{#FF6800}{ 160 } , \color{#FF6800}{ 320 }$
$2 ^ { 6 } \times 5$
Organize using the law of exponent
$\color{#FF6800}{ 16 } \times 20$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \times 20$
$2 ^ { 4 } \times \color{#FF6800}{ 20 }$
 Represents an integer as a product of decimal numbers 
$2 ^ { 4 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 5$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } \times 5$
$2 ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } \times 5$
 Add $4$ and $2$
$2 ^ { \color{#FF6800}{ 6 } } \times 5$
Solution search results
$20$ times $20$