qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
Do prime factorization
Answer
circle-check-icon
$15 ^{ 2 }$
$225$
Calculate the value
$\color{#FF6800}{ 15 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate power $ $
$\color{#FF6800}{ 225 }$
$9$
Find the number of divisors
$\color{#FF6800}{ 15 } ^ { 2 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If the base consists of products of two or more numbers, change to the product of each power $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 9 }$
$1 , 3 , 5 , 9 , 15 , 25 , 45 , 75 , 225$
Find all divisors
$\color{#FF6800}{ 15 } ^ { 2 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If the base consists of products of two or more numbers, change to the product of each power $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 15 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 45 } , \color{#FF6800}{ 75 } , \color{#FF6800}{ 225 }$
$3 ^ { 2 } \times 5 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 15 } ^ { 2 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If the base consists of products of two or more numbers, change to the product of each power $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo