Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Calculate the value
Answer
See the solving process
$\dfrac { 6 a ^ { 2 } } { b }$
Arrange the rational expression
$12 a ^ { 3 } \color{#FF6800}{ a } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$12 a ^ { 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$12 \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$ $ Add the exponent as the base is the same $ $
$12 \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$12 a ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$ $ Add $ 3 $ and $ 1$
$12 a ^ { \color{#FF6800}{ 4 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$\color{#FF6800}{ 12 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } } { \color{#FF6800}{ b } } }$
Solution search results
$20$ $11<11s$ $6$ less that five times $a2$ and $\pi \times 47$ $aa=132^{°},$ find $\pi ∠1129\left(8\right)$ $X$ $y$ $2$ $b$ $-$ $Aq$
10th-13th grade
Algebra
Check solution
times $\dfrac {2} {3}=\dfrac {3} {2}$
10th-13th grade
Other
Check solution
$20$ times $20$
1st-6th grade
Geometry
Check solution
$\left(a\right)$ $6q$ times $25$ is
1st-6th grade
Other
Check solution
Translate the sentence into an inequality. The sum of a number times $2$ and $15$ is at most $-30$ Use the variable $C$ c for the unknown number. $\square <\square $ $\square >\square $ OS $\square ∈\square $ $\square \times \square $ $\times $ $6$ $7$
7th-9th grade
Algebra
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com