# Calculator search results

Formula
Calculate the value
$12a ^{ 3 } b ^{ 2 } \div 4a ^{ 2 } b ^{ 3 } \times 2a$
$\dfrac { 6 a ^ { 2 } } { b }$
Arrange the rational expression
$12 a ^ { 3 } \color{#FF6800}{ a } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$12 a ^ { 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$12 \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
 Add the exponent as the base is the same 
$12 \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$12 a ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
 Add $3$ and $1$
$12 a ^ { \color{#FF6800}{ 4 } } b ^ { 2 } \div \left ( 4 a ^ { 2 } b ^ { 3 } \right ) \times 2$
$\color{#FF6800}{ 12 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { 6 a ^ { 2 } } { b } }$
Solution search results