Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Do prime factorization
Answer
See the solving process
Find the number of divisors
Answer
See the solving process
Find the cube root
Answer
See the solving process
List all divisors
Answer
See the solving process
Rewrite a number
Answer
See the solving process
$5 ^ { 3 }$
Do prime factorization
$\color{#FF6800}{ 125 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$4$
Find the number of divisors
$\color{#FF6800}{ 125 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 4 }$
$5$
Find the cube root
$\color{#FF6800}{ 125 }$
$ $ Present as the square root form $ $
$\sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 125 } }$
$\sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 125 } }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\color{#FF6800}{ 5 }$
$1 , 5 , 25 , 125$
Find all divisors
$\color{#FF6800}{ 125 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 125 }$
$5 ^ { 3 }$
Rewrite in exponential format
$\color{#FF6800}{ 125 }$
$ $ Write a number in exponential form with the base number, $ 5$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$1.25 \times 10 ^ { 2 }$
Rewrite in the scientific numeral system
$\color{#FF6800}{ 125 }$
$ $ Rewrite in the scientific numeral system $ $
$\color{#FF6800}{ 1.25 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 2 } }$
Solution search results
cube. 6. Show that $\sqrt [3] {27} \times \sqrt [3] {125} =\sqrt [3] {27\times 125} =15$
7th-9th grade
Other
Check solution
$2$ $12s^{-\dfrac {3-1} {y}}$
7th-9th grade
Other
Check solution
. Prove that $\left(i\right)$ $\left(8^{-\dfrac {2} {3}}\times 2^{\dfrac {1} {2}}\times 25^{\dfrac {5} {4}}\right)\div \left(32^{-\dfrac {2} {5}}\times 125^{\dfrac {5} {6}}\right)=\sqrt{2} $
7th-9th grade
Algebra
Check solution
$-$ $5x^{2}-125=$ $O$
Algebra
Check solution
$y=\dfrac {x^{3}-125} {x^{2}+5x+25}$ $3$ $X$
1st-6th grade
Other
Check solution
$10.$ Prove that $\left(i\right)$ $\left(8^{-\dfrac {2} {3}}\times 2^{\dfrac {1} {2}}\times 25$ $-\dfrac {5} {4}\right)\div \left(32^{\dfrac {2} {5}}\times 125^{\dfrac {5} {6}}\right)=\sqrt{2} $ $2$ $1$ $\sqrt{25} $ $65$
7th-9th grade
Algebra
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com