# Calculator search results

Formula
Find the greatest common factor
Find the least common multiple
$12,20$
$4$
Find the greatest common factor
$\color{#FF6800}{ 12 } , \color{#FF6800}{ 20 }$
 Do prime factorization 
$\begin{cases} 12 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ 20 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \end{cases}$
$\begin{cases} 12 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 1 } \\ 20 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 5 ^ { 1 } \end{cases}$
 Multiply all common prime factors, $2$ , and choose the exponent of the power from one of equal to or less 
$\begin{cases} 12 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 1 } \\ 20 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 5 ^ { 1 } \\ \text{Common factor} :\text{ } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \end{cases}$
$\begin{cases} 12 = 2 ^ { 2 } \times 3 ^ { 1 } \\ 20 = 2 ^ { 2 } \times 5 ^ { 1 } \\ \text{Common factor} :\text{ } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \end{cases}$
 Common factor is the greatest common factor 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } }$
 Calculate power 
$\color{#FF6800}{ 4 }$
$60$
Find the least common multiple
$\color{#FF6800}{ 12 } , \color{#FF6800}{ 20 }$
 Do prime factorization 
$\begin{cases} 12 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ 20 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \end{cases}$
$\begin{cases} 12 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 1 } \\ 20 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 5 ^ { 1 } \end{cases}$
 Multiply all common prime factors, $2$ , and choose the exponent of the power from one of equal to or greater 
$\begin{cases} 12 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 1 } \\ 20 = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 5 ^ { 1 } \\ \text{Common factor} :\text{ } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \end{cases}$
$\begin{cases} 12 = 2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ 20 = 2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \\ \text{Common factor} :\text{ } 2 ^ { 2 } \end{cases}$
 Multiply all non-common prime factors, $3 , 5$ and choose the exponent of the power from one of equal to or greater 
$\begin{cases} 12 = 2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ 20 = 2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \\ \text{Least common multiple (LCM)} :\text{ } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 12 } = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ \color{#FF6800}{ 20 } = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \\ \text{Least common multiple (LCM)} :\text{ } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \end{cases}$
 Find the least common multiple 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
 Simplify the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
 Multiply the numbers 
$\color{#FF6800}{ 60 }$
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture