Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Divide the numbers
Answer
See the solving process
$\dfrac { 27 } { 10 }$
Please divide by decimals
$\color{#FF6800}{ 11.34 } \div 4.2$
$ $ Convert decimals to fractions $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 567 } } { \color{#FF6800}{ 50 } } } \div 4.2$
$\dfrac { 567 } { 50 } \div \color{#FF6800}{ 4.2 }$
$ $ Convert decimals to fractions $ $
$\dfrac { 567 } { 50 } \div \color{#FF6800}{ \dfrac { \color{#FF6800}{ 21 } } { \color{#FF6800}{ 5 } } }$
$\dfrac { 567 } { 50 } \color{#FF6800}{ \div } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 21 } } { \color{#FF6800}{ 5 } } }$
$ $ Convert division to multiplication $ $
$\dfrac { 567 } { 50 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 21 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 567 } } { \color{#FF6800}{ 50 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 21 } } }$
$ $ Calculate the product of rational numbers $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 27 } } { \color{#FF6800}{ 10 } } }$
Solution search results
$5$ $2\sqrt{11.34} $
1st-6th grade
Other
Check solution
$2\right)$ Solve: $15-11.34$
1st-6th grade
Algebra
Check solution
$4$ $Q3$ Prove that the product of three consecutive positive integer is div $0$ $40$ For any positive integer $n,$ prove that $n^{3}-n$ divisible by $6.$ $2$ $5$ Prove that if a positive integer is of the form $6q+5,$ then it is of the
10th-13th grade
Other
Check solution
$y=x^{2}-4x-2$ $x$ $-1$ $0$ $1$ $2$ $3$ $4$ $5$ $y$
7th-9th grade
Other
Check solution
$-7$ $34.1$ $1\dfrac {1} {4}+1\dfrac {1} {6}-1\dfrac {1} {8}=7+1\dfrac {1} {12}$ $\left(1\right)\dfrac {5} {24}$ $\left(2\right)\dfrac {7} {24}$ $\left(3\right)\dfrac {5} {12}$ $\left(4\right)\dfrac {7} {12}$ $\left(5\right)$
1st-6th grade
Probability and Statistics
Check solution
2. $A$ $4$ $-4$ $-3$ $2$ $-1$ $0$ 1. $2$ $\left($ $1$ $-1=-$ $2$ · $B$ $-$ $-3$ - $4$ $A$ $B$
10th-13th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com