# Calculator search results

Formula
Solve the equation
Graph
$y = 10 x + 21$
$y = 15 - 2 x$
$x$-intercept
$\left ( - \dfrac { 21 } { 10 } , 0 \right )$
$y$-intercept
$\left ( 0 , 21 \right )$
$x$-intercept
$\left ( \dfrac { 15 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , 15 \right )$
$10x+21 = 15-2x$
$x = - \dfrac { 1 } { 2 }$
 Solve a solution to $x$
$10 x + 21 = \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
 Organize the expression 
$10 x + 21 = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$10 x + 21 = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + 15$
 Move the variable to the left-hand side and change the symbol 
$10 x + 21 \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 15$
$10 x \color{#FF6800}{ + } \color{#FF6800}{ 21 } + 2 x = 15$
 Move the constant to the right side and change the sign 
$10 x + 2 x = 15 \color{#FF6800}{ - } \color{#FF6800}{ 21 }$
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 15 - 21$
 Organize the expression 
$\color{#FF6800}{ 12 } \color{#FF6800}{ x } = 15 - 21$
$12 x = \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 21 }$
 Subtract $21$ from $15$
$12 x = \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 12 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
 그래프 보기 
Graph
Solution search results