qanda-logo
search-icon
Symbol

Calculator search results

Multiply the numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
Organize using the law of exponent
Answer
circle-check-icon
$300$
Multiply the numbers
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \times 3$
$ $ Multiply $ 10 $ and $ 10$
$\color{#FF6800}{ 100 } \times 3$
$\color{#FF6800}{ 100 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Multiply $ 100 $ and $ 3$
$\color{#FF6800}{ 300 }$
$18$
Find the number of divisors
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 3$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 5 \times 5 \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 3$
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$ $ Add $ 1 $ and $ 1$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 2 } } \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 18 }$
$1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , 25 , 30 , 50 , 60 , 75 , 100 , 150 , 300$
Find all divisors
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 3$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 5 \times 5 \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 3$
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$ $ Add $ 1 $ and $ 1$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 2 } } \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 10 } , \color{#FF6800}{ 12 } , \color{#FF6800}{ 15 } , \color{#FF6800}{ 20 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 30 } , \color{#FF6800}{ 50 } , \color{#FF6800}{ 60 } , \color{#FF6800}{ 75 } , \color{#FF6800}{ 100 } , \color{#FF6800}{ 150 } , \color{#FF6800}{ 300 }$
$2 ^ { 2 } \times 5 ^ { 2 } \times 3$
Organize using the law of exponent
$\color{#FF6800}{ 10 } \times 10 \times 3$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 } \times 10 \times 3$
$2 \times 5 \times \color{#FF6800}{ 10 } \times 3$
$ $ Represents an integer as a product of decimal numbers $ $
$2 \times 5 \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 } \times 3$
$\color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 3$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$ $ Add $ 1 $ and $ 1$
$2 ^ { \color{#FF6800}{ 2 } } \times 5 \times 5 \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } \times 5 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 3$
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$ $ Add $ 1 $ and $ 1$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 2 } } \times 3$
$10 ^ { 2 } \times 3$
Organize using the law of exponent
$\color{#FF6800}{ 10 } \times 10 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 10 \times 3$
$10 ^ { 1 } \times \color{#FF6800}{ 10 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$10 ^ { 1 } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 3$
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 3$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$10 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$ $ Add $ 1 $ and $ 1$
$10 ^ { \color{#FF6800}{ 2 } } \times 3$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture