# Calculator search results

Formula
Multiply the numbers
Find the number of divisors
List all divisors
Do prime factorization
Organize using the law of exponent
$10 \times 10 \times 3$
$300$
Multiply the numbers
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \times 3$
 Multiply $10$ and $10$
$\color{#FF6800}{ 100 } \times 3$
$\color{#FF6800}{ 100 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 Multiply $100$ and $3$
$\color{#FF6800}{ 300 }$
$18$
Find the number of divisors
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 3$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
 Add $1$ and $1$
$2 ^ { \color{#FF6800}{ 2 } } \times 5 \times 5 \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 3$
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
 Add $1$ and $1$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 2 } } \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 18 }$
$1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , 25 , 30 , 50 , 60 , 75 , 100 , 150 , 300$
Find all divisors
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 3$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
 Add $1$ and $1$
$2 ^ { \color{#FF6800}{ 2 } } \times 5 \times 5 \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 3$
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
 Add $1$ and $1$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 2 } } \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 List divisors of factors 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
 Find all divisors by combining factors which is possible for the reduction of fraction 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 10 } , \color{#FF6800}{ 12 } , \color{#FF6800}{ 15 } , \color{#FF6800}{ 20 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 30 } , \color{#FF6800}{ 50 } , \color{#FF6800}{ 60 } , \color{#FF6800}{ 75 } , \color{#FF6800}{ 100 } , \color{#FF6800}{ 150 } , \color{#FF6800}{ 300 }$
$2 ^ { 2 } \times 5 ^ { 2 } \times 3$
Organize using the law of exponent
$\color{#FF6800}{ 10 } \times 10 \times 3$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 } \times 10 \times 3$
$2 \times 5 \times \color{#FF6800}{ 10 } \times 3$
 Represents an integer as a product of decimal numbers 
$2 \times 5 \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 } \times 3$
$\color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 3$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 3$
 Add $1$ and $1$
$2 ^ { \color{#FF6800}{ 2 } } \times 5 \times 5 \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } \times 5 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 3$
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 3$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
 Add $1$ and $1$
$2 ^ { 2 } \times 5 ^ { \color{#FF6800}{ 2 } } \times 3$
$10 ^ { 2 } \times 3$
Organize using the law of exponent
$\color{#FF6800}{ 10 } \times 10 \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 10 \times 3$
$10 ^ { 1 } \times \color{#FF6800}{ 10 } \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$10 ^ { 1 } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 3$
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 3$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
$10 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3$
 Add $1$ and $1$
$10 ^ { \color{#FF6800}{ 2 } } \times 3$
Solution search results