qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$10 \left( g+2 \right) = 6 \left( g+4 \right)$
$g = 1$
$ $ Solve a solution to $ g$
$\color{#FF6800}{ 10 } \left ( \color{#FF6800}{ g } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) = 6 \left ( g + 4 \right )$
$ $ Multiply each term in parentheses by $ 10$
$\color{#FF6800}{ 10 } \color{#FF6800}{ g } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } = 6 \left ( g + 4 \right )$
$10 g + 10 \times 2 = \color{#FF6800}{ 6 } \left ( \color{#FF6800}{ g } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$ $ Multiply each term in parentheses by $ 6$
$10 g + 10 \times 2 = \color{#FF6800}{ 6 } \color{#FF6800}{ g } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 }$
$10 g + \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } = 6 g + 6 \times 4$
$ $ Multiply $ 10 $ and $ 2$
$10 g + \color{#FF6800}{ 20 } = 6 g + 6 \times 4$
$10 g + 20 = 6 g + \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 }$
$ $ Multiply $ 6 $ and $ 4$
$10 g + 20 = 6 g + \color{#FF6800}{ 24 }$
$10 g + 20 = \color{#FF6800}{ 6 } \color{#FF6800}{ g } + 24$
$ $ Move the variable to the left-hand side and change the symbol $ $
$10 g + 20 \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ g } = 24$
$10 g \color{#FF6800}{ + } \color{#FF6800}{ 20 } - 6 g = 24$
$ $ Move the constant to the right side and change the sign $ $
$10 g - 6 g = 24 \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
$\color{#FF6800}{ 10 } \color{#FF6800}{ g } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ g } = 24 - 20$
$ $ Organize the expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ g } = 24 - 20$
$4 g = \color{#FF6800}{ 24 } \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
$ $ Subtract $ 20 $ from $ 24$
$4 g = \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ g } = \color{#FF6800}{ 4 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ g } = \color{#FF6800}{ 1 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Given the set of ordered pairs $\left(\left(-7.0\right),\left(-6,5\right),\left(-5,-3\right),\left(-1,2\right)$ $\left(1,6\right),\left(2,-2\right)$ $\left(5,3\right)\left(7,-8\right)\right)$ 
Find f(7)fAleft(7\right) 
O a 
O b -8 
6. 
$5$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo