$\color{#FF6800}{ 10 \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 20 } } } - 8 \dfrac { 7 } { 25 }$
$ $ Convert mixed number into improper fraction $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 203 } } { \color{#FF6800}{ 20 } } } - 8 \dfrac { 7 } { 25 }$
$\dfrac { 203 } { 20 } \color{#FF6800}{ - } \color{#FF6800}{ 8 \dfrac { \color{#FF6800}{ 7 } } { \color{#FF6800}{ 25 } } }$
$ $ Convert mixed number into improper fraction $ $
$\dfrac { 203 } { 20 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 207 } } { \color{#FF6800}{ 25 } } }$
$\dfrac { 203 } { \color{#FF6800}{ 20 } } - \dfrac { 207 } { \color{#FF6800}{ 25 } }$
$ $ The smallest common multiple in denominator is $ 100$
$\dfrac { 203 } { \color{#FF6800}{ 20 } } - \dfrac { 207 } { \color{#FF6800}{ 25 } }$
$\dfrac { 203 } { 20 } - \dfrac { 207 } { 25 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 203 \times \color{#FF6800}{ 5 } } { 20 \times \color{#FF6800}{ 5 } } - \dfrac { 207 \times \color{#FF6800}{ 4 } } { 25 \times \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 203 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } { \color{#FF6800}{ 20 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 207 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } { \color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1015 } } { \color{#FF6800}{ 100 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 828 } } { \color{#FF6800}{ 100 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1015 } } { \color{#FF6800}{ 100 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 828 } } { \color{#FF6800}{ 100 } } }$
$ $ Since the denominator is the same as $ 100 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1015 } \color{#FF6800}{ - } \color{#FF6800}{ 828 } } { \color{#FF6800}{ 100 } } }$
$\dfrac { \color{#FF6800}{ 1015 } \color{#FF6800}{ - } \color{#FF6800}{ 828 } } { 100 }$
$ $ Subtract $ 828 $ from $ 1015$
$\dfrac { \color{#FF6800}{ 187 } } { 100 }$