Symbol

# Calculator search results

Formula
Convert decimals to fractions
$1.55 \dot{ 1 } \dot{ 2 }$
$\dfrac { 5119 } { 3300 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 1.55 \dot{ 1 } \dot{ 2 } }$
 Set the repeating decimal number to x 
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.55 \dot{ 1 } \dot{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.55 \dot{ 1 } \dot{ 2 } }$
 Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number 
$\begin{cases} \color{#FF6800}{ 10000 } \color{#FF6800}{ x } = \color{#FF6800}{ 15512. \dot{ 1 } \dot{ 2 } } \\ \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 155. \dot{ 1 } \dot{ 2 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 10000 } \color{#FF6800}{ x } = \color{#FF6800}{ 15512. \dot{ 1 } \dot{ 2 } } \\ \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 155. \dot{ 1 } \dot{ 2 } } \end{cases}$
 Since the prime number part of the right side of the two expressions is the same, only the integer part remains 
$\color{#FF6800}{ 9900 } \color{#FF6800}{ x } = \color{#FF6800}{ 15357 }$
$\color{#FF6800}{ 9900 } \color{#FF6800}{ x } = \color{#FF6800}{ 15357 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 5119 } { 3300 } }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture