Calculator search results

Formula
Convert decimals to fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$1.5 \dot{ 3 }$
$\dfrac { 23 } { 15 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 1.5 \dot{ 3 } }$
$ $ Set the repeating decimal number to x $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.5 \dot{ 3 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.5 \dot{ 3 } }$
$ $ Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number $ $
$\begin{cases} \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 153. \dot{ 3 } } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } = \color{#FF6800}{ 15. \dot{ 3 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 153. \dot{ 3 } } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } = \color{#FF6800}{ 15. \dot{ 3 } } \end{cases}$
$ $ Since the prime number part of the right side of the two expressions is the same, only the integer part remains $ $
$\color{#FF6800}{ 90 } \color{#FF6800}{ x } = \color{#FF6800}{ 138 }$
$\color{#FF6800}{ 90 } \color{#FF6800}{ x } = \color{#FF6800}{ 138 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 23 } { 15 } }$
Solution search results
search-thumbnail-Activity $2-$ Convert the following. 
$C2x$ $-c\bar{a} $ Cu.m $2$ $C2n=c\bar{m} $ $L$ 
$262O0$ $4$ $15.8L$ 
$\dfrac {\dfrac {1} {2}} {3}$ $1.56$ $c11$ $rm$ $5$ $18900$ $c11$ $C11.C\pi I1$ 
$628\left(\right)\left(0$ $c11$ $11$ $-<:TL$
1st-6th grade
Other
search-thumbnail-अब $\sqrt{2} $ तथा3 $\sqrt{3} $ के बीच दो अपरिमेय संख्याएँ हैं- 
$1.51010010001$ तथा $1.52020020002$ 
$0$ $1.2$ करके सीखें 
$1$ $\sqrt{3} $ तथा5 $\sqrt{5} $ के बीच दो अपरिमेय संख्या ज्ञात करें। 
माध्यमिक स्तर
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo