Calculator search results

Formula
Convert decimals to fractions
$1.40 \dot{ 0 } \dot{ 4 }$
$\dfrac { 3466 } { 2475 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 1.40 \dot{ 0 } \dot{ 4 } }$
 Set the repeating decimal number to x 
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.40 \dot{ 0 } \dot{ 4 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.40 \dot{ 0 } \dot{ 4 } }$
 Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number 
$\begin{cases} \color{#FF6800}{ 10000 } \color{#FF6800}{ x } = \color{#FF6800}{ 14004. \dot{ 0 } \dot{ 4 } } \\ \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 140. \dot{ 0 } \dot{ 4 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 10000 } \color{#FF6800}{ x } = \color{#FF6800}{ 14004. \dot{ 0 } \dot{ 4 } } \\ \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 140. \dot{ 0 } \dot{ 4 } } \end{cases}$
 Since the prime number part of the right side of the two expressions is the same, only the integer part remains 
$\color{#FF6800}{ 9900 } \color{#FF6800}{ x } = \color{#FF6800}{ 13864 }$
$\color{#FF6800}{ 9900 } \color{#FF6800}{ x } = \color{#FF6800}{ 13864 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 3466 } { 2475 } }$
Solution search results