qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Convert decimals to fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$1.40 \dot{ 0 } \dot{ 4 }$
$\dfrac { 3466 } { 2475 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 1.40 \dot{ 0 } \dot{ 4 } }$
$ $ Set the repeating decimal number to x $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.40 \dot{ 0 } \dot{ 4 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 1.40 \dot{ 0 } \dot{ 4 } }$
$ $ Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number $ $
$\begin{cases} \color{#FF6800}{ 10000 } \color{#FF6800}{ x } = \color{#FF6800}{ 14004. \dot{ 0 } \dot{ 4 } } \\ \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 140. \dot{ 0 } \dot{ 4 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 10000 } \color{#FF6800}{ x } = \color{#FF6800}{ 14004. \dot{ 0 } \dot{ 4 } } \\ \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 140. \dot{ 0 } \dot{ 4 } } \end{cases}$
$ $ Since the prime number part of the right side of the two expressions is the same, only the integer part remains $ $
$\color{#FF6800}{ 9900 } \color{#FF6800}{ x } = \color{#FF6800}{ 13864 }$
$\color{#FF6800}{ 9900 } \color{#FF6800}{ x } = \color{#FF6800}{ 13864 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 3466 } { 2475 } }$
Solution search results
search-thumbnail-.Order from GREATEST to $EAST$ 
$\left(20$ Points) 
$1.43$ $1.490,$ $\dfrac {5} {4},4$ 
$○$ $1.490,$ $\dfrac {5} {4},$ $1.4$ 4 
$O4,$ $\dfrac {5} {4}$ $1.42$ $1.40/$ $0$ 
$○$ $4$ 4, $1.4,$ $\dfrac {5} {4}$ $1.40/$ $0$ 
$\right)4,$ $1.4,$ $\dfrac {5} {4}$ 
$1.490,$ 4
7th-9th grade
Other
search-thumbnail-$x1$ 
$18$ $\dfrac {1} {4}$ 1. $1\left(C$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo