Calculator search results

Formula
Convert decimals to fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$1. \dot{ 3 } 7 \dot{ 1 }$
$\dfrac { 1370 } { 999 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 1. \dot{ 3 } 7 \dot{ 1 } }$
$ $ Set the repeating decimal number to x $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 1. \dot{ 3 } 7 \dot{ 1 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 1. \dot{ 3 } 7 \dot{ 1 } }$
$ $ Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number $ $
$\begin{cases} \color{#FF6800}{ 1000 } \color{#FF6800}{ x } = \color{#FF6800}{ 1371. \dot{ 3 } 7 \dot{ 1 } } \\ \color{#FF6800}{ 1 } \color{#FF6800}{ x } = \color{#FF6800}{ 1. \dot{ 3 } 7 \dot{ 1 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 1000 } \color{#FF6800}{ x } = \color{#FF6800}{ 1371. \dot{ 3 } 7 \dot{ 1 } } \\ \color{#FF6800}{ 1 } \color{#FF6800}{ x } = \color{#FF6800}{ 1. \dot{ 3 } 7 \dot{ 1 } } \end{cases}$
$ $ Since the prime number part of the right side of the two expressions is the same, only the integer part remains $ $
$\color{#FF6800}{ 999 } \color{#FF6800}{ x } = \color{#FF6800}{ 1370 }$
$\color{#FF6800}{ 999 } \color{#FF6800}{ x } = \color{#FF6800}{ 1370 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1370 } { 999 } }$
Solution search results
search-thumbnail-$-1m→$ $=$ 

$xm_{1}$ $1.2m$
10th-13th grade
Other
search-thumbnail-$14°^{1}$ 
$1.$ $3.2$ सेमी त्रिज्या का एक वृत्त खींचिए।
7th-9th grade
Other
search-thumbnail-C. 
$1$ $\bar{3n} $ $6$ 


$>$ 
$6$ $C_{1}$ 1. $>0$
10th-13th grade
Other
search-thumbnail-$\bar{1} $ 
$1.\int \left(x+1\right)\sqrt{1-x^{2}} $ $ax$
10th-13th grade
Other
search-thumbnail-$crLC$ $A1N_{1}$ 
$1.2=-3.25$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo