Symbol

Calculator search results

Formula
Solve the inequality
Graph
$1 - \dfrac { x } { 3 } \leq - 8$
$1 - \dfrac { x } { 3 } \leq - 8$
Solution of inequality
$x \geq 27$
$1- \dfrac{ x }{ 3 } \leq -8$
$x \geq 27$
 Solve a solution to $x$
$\color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 3 } } \leq \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 24 }$
$\color{#FF6800}{ 3 } - x \leq - 24$
 Move the constant to the right side and change the sign 
$- x \leq - 24 \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$- x \leq \color{#FF6800}{ - } \color{#FF6800}{ 24 } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Find the sum of the negative numbers 
$- x \leq \color{#FF6800}{ - } \color{#FF6800}{ 27 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 27 }$
 Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction 
$x \geq 27$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture