Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$1- [ 3+ \dfrac{ 1 }{ 2 } \div \{ \dfrac{ 3 }{ 4 } - \left( -1 \right) ^{ 2 } \} ]$
$0$
Calculate the value
$1 - \left ( 3 + \dfrac { 1 } { 2 } \div \left ( \dfrac { 3 } { 4 } - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \right ) \right )$
$ $ Remove negative signs because negative numbers raised to even powers are positive $ $
$1 - \left ( 3 + \dfrac { 1 } { 2 } \div \left ( \dfrac { 3 } { 4 } - 1 ^ { 2 } \right ) \right )$
$1 - \left ( 3 + \dfrac { 1 } { 2 } \div \left ( \dfrac { 3 } { 4 } - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \right ) \right )$
$ $ Calculate power $ $
$1 - \left ( 3 + \dfrac { 1 } { 2 } \div \left ( \dfrac { 3 } { 4 } - \color{#FF6800}{ 1 } \right ) \right )$
$1 - \left ( 3 + \dfrac { 1 } { 2 } \div \left ( \color{#FF6800}{ \dfrac { 3 } { 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
$ $ Subtract $ 1 $ from $ \dfrac { 3 } { 4 }$
$1 - \left ( 3 + \dfrac { 1 } { 2 } \div \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 4 } } \right ) \right )$
$1 - \left ( 3 + \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ \div } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 4 } } \right ) \right )$
$ $ Divide $ \dfrac { 1 } { 2 } $ by $ - \dfrac { 1 } { 4 }$
$1 - \left ( 3 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$1 - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Subtract $ 2 $ from $ 3$
$1 - \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Remove the two numbers if the values are the same and the signs are different $ $
$0$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$11.$ Question $11$ 
Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ 
$\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ 
$\left(11\right)$ $3tan^{2}θ+2=3$ 
$\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ 
$c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo