# Calculator search results

Formula
Solve the inequality
Graph
$0.3 x - 4 \geq 0.25 \left ( x - 10 \right )$
$0.3 x - 4 \geq 0.25 \left ( x - 10 \right )$
Solution of inequality
$x \geq 30$
$0.3x-4 \geq 0.25 \left( x-10 \right)$
$x \geq 30$
 Solve a solution to $x$
$0.3 x - 4 \geq \color{#FF6800}{ 0.25 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
 Multiply each term in parentheses by $0.25$
$0.3 x - 4 \geq \color{#FF6800}{ 0.25 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.25 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
$\color{#FF6800}{ 0.3 } \color{#FF6800}{ x } - 4 \geq 0.25 x + 0.25 \times \left ( - 10 \right )$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { 3 x } { 10 } } - 4 \geq 0.25 x + 0.25 \times \left ( - 10 \right )$
$\dfrac { 3 x } { 10 } - 4 \geq \color{#FF6800}{ 0.25 } \color{#FF6800}{ x } + 0.25 \times \left ( - 10 \right )$
 Calculate the multiplication expression 
$\dfrac { 3 x } { 10 } - 4 \geq \color{#FF6800}{ \dfrac { x } { 4 } } + 0.25 \times \left ( - 10 \right )$
$\dfrac { 3 x } { 10 } - 4 \geq \dfrac { x } { 4 } + \color{#FF6800}{ 0.25 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
 Multiply $0.25$ and $- 10$
$\dfrac { 3 x } { 10 } - 4 \geq \dfrac { x } { 4 } \color{#FF6800}{ - } \color{#FF6800}{ 2.5 }$
$\dfrac { 3 x } { 10 } - 4 \geq \dfrac { x } { 4 } \color{#FF6800}{ - } \color{#FF6800}{ 2.5 }$
 Convert decimals to fractions 
$\dfrac { 3 x } { 10 } - 4 \geq \dfrac { x } { 4 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 5 } { 2 } }$
$\color{#FF6800}{ \dfrac { 3 x } { 10 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \geq \color{#FF6800}{ \dfrac { x } { 4 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 5 } { 2 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 80 } \geq \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 50 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) - 80 \geq 5 x - 50$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } - 80 \geq 5 x - 50$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } - 80 \geq 5 x - 50$
 Simplify the expression 
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } - 80 \geq 5 x - 50$
$6 x - 80 \geq \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 50$
 Move the variable to the left-hand side and change the symbol 
$6 x - 80 \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \geq - 50$
$6 x \color{#FF6800}{ - } \color{#FF6800}{ 80 } - 5 x \geq - 50$
 Move the constant to the right side and change the sign 
$6 x - 5 x \geq - 50 \color{#FF6800}{ + } \color{#FF6800}{ 80 }$
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \geq - 50 + 80$
 Organize the expression 
$\color{#FF6800}{ x } \geq - 50 + 80$
$x \geq \color{#FF6800}{ - } \color{#FF6800}{ 50 } \color{#FF6800}{ + } \color{#FF6800}{ 80 }$
 Add $- 50$ and $80$
$x \geq \color{#FF6800}{ 30 }$
 그래프 보기 
Inequality
Solution search results