Calculator search results

Formula
Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$0.2 x - \dfrac { 1 } { 5 } < \dfrac { 1 } { 2 } x + 1.3$
$0.2 x - \dfrac { 1 } { 5 } < \dfrac { 1 } { 2 } x + 1.3$
Solution of inequality
$x > - 5$
$0.2x- \dfrac{ 1 }{ 5 } < \dfrac{ 1 }{ 2 } x+1.3$
$x > - 5$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ 0.2 } \color{#FF6800}{ x } - \dfrac { 1 } { 5 } < \dfrac { 1 } { 2 } x + 1.3$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { x } { 5 } } - \dfrac { 1 } { 5 } < \dfrac { 1 } { 2 } x + 1.3$
$\dfrac { x } { 5 } - \dfrac { 1 } { 5 } < \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } + 1.3$
$ $ Calculate the multiplication expression $ $
$\dfrac { x } { 5 } - \dfrac { 1 } { 5 } < \color{#FF6800}{ \dfrac { x } { 2 } } + 1.3$
$\dfrac { x } { 5 } - \dfrac { 1 } { 5 } < \dfrac { x } { 2 } + \color{#FF6800}{ 1.3 }$
$ $ Convert decimals to fractions $ $
$\dfrac { x } { 5 } - \dfrac { 1 } { 5 } < \dfrac { x } { 2 } + \color{#FF6800}{ \dfrac { 13 } { 10 } }$
$\color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } < \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 13 } { 10 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } < \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 13 }$
$2 x - 2 < \color{#FF6800}{ 5 } \color{#FF6800}{ x } + 13$
$ $ Move the variable to the left-hand side and change the symbol $ $
$2 x - 2 \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } < 13$
$2 x \color{#FF6800}{ - } \color{#FF6800}{ 2 } - 5 x < 13$
$ $ Move the constant to the right side and change the sign $ $
$2 x - 5 x < 13 \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } < 13 + 2$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } < 13 + 2$
$- 3 x < \color{#FF6800}{ 13 } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$ $ Add $ 13 $ and $ 2$
$- 3 x < \color{#FF6800}{ 15 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } < \color{#FF6800}{ 15 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$3 x > - 15$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 15 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
$ $ 그래프 보기 $ $
Inequality
Solution search results
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo