Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = 0.25 x$
$y = 2 - \dfrac { 2 x + 1 } { 3 }$
$x$-intercept
$\left ( 0 , 0 \right )$
$y$-intercept
$\left ( 0 , 0 \right )$
$x$-intercept
$\left ( \dfrac { 5 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 5 } { 3 } \right )$
$0.25x = 2- \dfrac{ 2x+1 }{ 3 }$
$x = \dfrac { 20 } { 11 }$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ 0.25 } \color{#FF6800}{ x } = 2 - \dfrac { 2 x + 1 } { 3 }$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { x } { 4 } } = 2 - \dfrac { 2 x + 1 } { 3 }$
$\color{#FF6800}{ \dfrac { x } { 4 } } = \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x + 1 } { 3 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
$3 x = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } + 20$
$ $ Move the variable to the left-hand side and change the symbol $ $
$3 x + 8 x = 20$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } = 20$
$ $ Organize the expression $ $
$\color{#FF6800}{ 11 } \color{#FF6800}{ x } = 20$
$\color{#FF6800}{ 11 } \color{#FF6800}{ x } = \color{#FF6800}{ 20 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 20 } { 11 } }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$1.\right)$ $0.25x+2x+12=39$ Given 
$2.25x+12=39$ $a.\right)$ $c0mbine$ like terms 
$2.25x=27$ b.) $\right)$ Subtraction prop of equality 
$225x=2700$ c.) $\right)$ 
$x=12$ $d.\right)$ divison prop of equality
7th-9th grade
Geometry
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo