# Calculator search results

Formula
Solve the equation
Graph
$y = 0.25 x$
$y = 2 - \dfrac { 2 x + 1 } { 3 }$
$x$-intercept
$\left ( 0 , 0 \right )$
$y$-intercept
$\left ( 0 , 0 \right )$
$x$-intercept
$\left ( \dfrac { 5 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 5 } { 3 } \right )$
$0.25x = 2- \dfrac{ 2x+1 }{ 3 }$
$x = \dfrac { 20 } { 11 }$
 Solve a solution to $x$
$\color{#FF6800}{ 0.25 } \color{#FF6800}{ x } = 2 - \dfrac { 2 x + 1 } { 3 }$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 4 } } = 2 - \dfrac { 2 x + 1 } { 3 }$
$\color{#FF6800}{ \dfrac { x } { 4 } } = \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x + 1 } { 3 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
$3 x = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } + 20$
 Move the variable to the left-hand side and change the symbol 
$3 x + 8 x = 20$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } = 20$
 Organize the expression 
$\color{#FF6800}{ 11 } \color{#FF6800}{ x } = 20$
$\color{#FF6800}{ 11 } \color{#FF6800}{ x } = \color{#FF6800}{ 20 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 20 } { 11 } }$
 그래프 보기 
Graph
Solution search results