# Calculator search results

Formula
Solve the equation
Graph
$y = 0.2 \left ( x - 4 \right )$
$y = 0.15 \left ( x - 3 \right )$
$x$-intercept
$\left ( 4 , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 4 } { 5 } \right )$
$x$-intercept
$\left ( 3 , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 9 } { 20 } \right )$
$0.2 \left( x-4 \right) = 0.15 \left( x-3 \right)$
$x = 7$
 Solve a solution to $x$
$\color{#FF6800}{ 0.2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) = \color{#FF6800}{ 0.15 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Organize the expression 
$\color{#FF6800}{ 0.2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.2 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) = \color{#FF6800}{ 0.15 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.15 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
$\color{#FF6800}{ 0.2 } \color{#FF6800}{ x } + 0.2 \times \left ( - 4 \right ) = 0.15 x + 0.15 \times \left ( - 3 \right )$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 5 } } + 0.2 \times \left ( - 4 \right ) = 0.15 x + 0.15 \times \left ( - 3 \right )$
$\dfrac { x } { 5 } + \color{#FF6800}{ 0.2 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) = 0.15 x + 0.15 \times \left ( - 3 \right )$
 Multiply $0.2$ and $- 4$
$\dfrac { x } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 0.8 } = 0.15 x + 0.15 \times \left ( - 3 \right )$
$\dfrac { x } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 0.8 } = 0.15 x + 0.15 \times \left ( - 3 \right )$
 Convert decimals to fractions 
$\dfrac { x } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 5 } } = 0.15 x + 0.15 \times \left ( - 3 \right )$
$\dfrac { x } { 5 } - \dfrac { 4 } { 5 } = \color{#FF6800}{ 0.15 } \color{#FF6800}{ x } + 0.15 \times \left ( - 3 \right )$
 Calculate the multiplication expression 
$\dfrac { x } { 5 } - \dfrac { 4 } { 5 } = \color{#FF6800}{ \dfrac { 3 x } { 20 } } + 0.15 \times \left ( - 3 \right )$
$\dfrac { x } { 5 } - \dfrac { 4 } { 5 } = \dfrac { 3 x } { 20 } + \color{#FF6800}{ 0.15 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Multiply $0.15$ and $- 3$
$\dfrac { x } { 5 } - \dfrac { 4 } { 5 } = \dfrac { 3 x } { 20 } \color{#FF6800}{ - } \color{#FF6800}{ 0.45 }$
$\dfrac { x } { 5 } - \dfrac { 4 } { 5 } = \dfrac { 3 x } { 20 } \color{#FF6800}{ - } \color{#FF6800}{ 0.45 }$
 Convert decimals to fractions 
$\dfrac { x } { 5 } - \dfrac { 4 } { 5 } = \dfrac { 3 x } { 20 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 20 } }$
$\color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 5 } } = \color{#FF6800}{ \dfrac { 3 x } { 20 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 20 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 16 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 16 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
 Organize the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = - 9 + 16$
 Organize the expression 
$\color{#FF6800}{ x } = - 9 + 16$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
 Add $- 9$ and $16$
$x = \color{#FF6800}{ 7 }$
 그래프 보기 
Graph
Solution search results