Symbol

# Calculator search results

Formula
Solve the equation
Graph
$y = 0.2 \left ( x + 3 \right )$
$y = 0.3 x - 5$
$x$Intercept
$\left ( - 3 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 3 } { 5 } \right )$
$x$Intercept
$\left ( \dfrac { 50 } { 3 } , 0 \right )$
$y$Intercept
$\left ( 0 , - 5 \right )$
$0.2 \left( x+3 \right) = 0.3x-5$
$x = 56$
 Solve a solution to $x$
$\color{#FF6800}{ 0.2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) = 0.3 x - 5$
 Multiply each term in parentheses by $0.2$
$\color{#FF6800}{ 0.2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = 0.3 x - 5$
$\color{#FF6800}{ 0.2 } \color{#FF6800}{ x } + 0.2 \times 3 = 0.3 x - 5$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 5 } } + 0.2 \times 3 = 0.3 x - 5$
$\dfrac { x } { 5 } + \color{#FF6800}{ 0.2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = 0.3 x - 5$
 Multiply $0.2$ and $3$
$\dfrac { x } { 5 } + \color{#FF6800}{ 0.6 } = 0.3 x - 5$
$\dfrac { x } { 5 } + \color{#FF6800}{ 0.6 } = 0.3 x - 5$
 Convert decimals to fractions 
$\dfrac { x } { 5 } + \color{#FF6800}{ \dfrac { 3 } { 5 } } = 0.3 x - 5$
$\dfrac { x } { 5 } + \dfrac { 3 } { 5 } = \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } - 5$
 Calculate the multiplication expression 
$\dfrac { x } { 5 } + \dfrac { 3 } { 5 } = \color{#FF6800}{ \dfrac { 3 x } { 10 } } - 5$
$\color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 } { 5 } } = \color{#FF6800}{ \dfrac { 3 x } { 10 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 50 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 50 }$
 Organize the expression 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 50 } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = - 50 - 6$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ x } = - 50 - 6$
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 50 } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Find the sum of the negative numbers 
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 56 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 56 }$
 Change the sign of both sides of the equation 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 56 } \right )$
$x = \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } 56 \right )$
 Simplify Minus 
$x = 56$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture