Symbol

Calculator search results

Formula
Solve the inequality
Graph
$0.1 \left ( x - 7 \right ) < - 0.2 x - 1$
$0.1 \left ( x - 7 \right ) < - 0.2 x - 1$
Solution of inequality
$x < - 1$
$0.1 \left( x-7 \right) < -0.2x-1$
$x < - 1$
 Solve a solution to $x$
$\color{#FF6800}{ 0.1 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \right ) < - 0.2 x - 1$
 Multiply each term in parentheses by $0.1$
$\color{#FF6800}{ 0.1 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 7 } \right ) < - 0.2 x - 1$
$\color{#FF6800}{ 0.1 } \color{#FF6800}{ x } + 0.1 \times \left ( - 7 \right ) < - 0.2 x - 1$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 10 } } + 0.1 \times \left ( - 7 \right ) < - 0.2 x - 1$
$\dfrac { x } { 10 } + \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 7 } \right ) < - 0.2 x - 1$
 Multiply $0.1$ and $- 7$
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.7 } < - 0.2 x - 1$
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.7 } < - 0.2 x - 1$
 Convert decimals to fractions 
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 10 } } < - 0.2 x - 1$
$\dfrac { x } { 10 } - \dfrac { 7 } { 10 } < \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } \color{#FF6800}{ x } - 1$
 Calculate the multiplication expression 
$\dfrac { x } { 10 } - \dfrac { 7 } { 10 } < \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 5 } } - 1$
$\color{#FF6800}{ \dfrac { x } { 10 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 10 } } < \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 7 } < \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 }$
$x - 7 < \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 10$
 Move the variable to the left-hand side and change the symbol 
$x - 7 \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } < - 10$
$x \color{#FF6800}{ - } \color{#FF6800}{ 7 } + 2 x < - 10$
 Move the constant to the right side and change the sign 
$x + 2 x < - 10 \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } < - 10 + 7$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } < - 10 + 7$
$3 x < \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
 Add $- 10$ and $7$
$3 x < \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture