# Calculator search results

Formula
Solve the equation
Graph
$y = 0.1 \left ( x - 2 \right )$
$y = 0.03 x - 0.34$
$x$-intercept
$\left ( 2 , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 1 } { 5 } \right )$
$x$-intercept
$\left ( \dfrac { 34 } { 3 } , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 17 } { 50 } \right )$
$0.1 \left( x-2 \right) = 0.03x-0.34$
$x = - 2$
 Solve a solution to $x$
$\color{#FF6800}{ 0.1 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = 0.03 x - 0.34$
 Multiply each term in parentheses by $0.1$
$\color{#FF6800}{ 0.1 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = 0.03 x - 0.34$
$\color{#FF6800}{ 0.1 } \color{#FF6800}{ x } + 0.1 \times \left ( - 2 \right ) = 0.03 x - 0.34$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 10 } } + 0.1 \times \left ( - 2 \right ) = 0.03 x - 0.34$
$\dfrac { x } { 10 } + \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = 0.03 x - 0.34$
 Multiply $0.1$ and $- 2$
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } = 0.03 x - 0.34$
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } = 0.03 x - 0.34$
 Convert decimals to fractions 
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } = 0.03 x - 0.34$
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \color{#FF6800}{ 0.03 } \color{#FF6800}{ x } - 0.34$
 Calculate the multiplication expression 
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \color{#FF6800}{ \dfrac { 3 x } { 100 } } - 0.34$
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \dfrac { 3 x } { 100 } \color{#FF6800}{ - } \color{#FF6800}{ 0.34 }$
 Convert decimals to fractions 
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \dfrac { 3 x } { 100 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 17 } { 50 } }$
$\color{#FF6800}{ \dfrac { x } { 10 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } = \color{#FF6800}{ \dfrac { 3 x } { 100 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 17 } { 50 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 20 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 34 }$
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 20 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 34 }$
 Organize the expression 
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 34 } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = - 34 + 20$
 Organize the expression 
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = - 34 + 20$
$7 x = \color{#FF6800}{ - } \color{#FF6800}{ 34 } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
 Add $- 34$ and $20$
$7 x = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 그래프 보기 
Graph
Solution search results