qanda-logo
search-icon
Symbol

Calculator search results

Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = 0.1 \left ( x - 2 \right )$
$y = 0.03 x - 0.34$
$x$Intercept
$\left ( 2 , 0 \right )$
$y$Intercept
$\left ( 0 , - \dfrac { 1 } { 5 } \right )$
$x$Intercept
$\left ( \dfrac { 34 } { 3 } , 0 \right )$
$y$Intercept
$\left ( 0 , - \dfrac { 17 } { 50 } \right )$
$x = - 2$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ 0.1 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = 0.03 x - 0.34$
$ $ Multiply each term in parentheses by $ 0.1$
$\color{#FF6800}{ 0.1 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = 0.03 x - 0.34$
$\color{#FF6800}{ 0.1 } \color{#FF6800}{ x } + 0.1 \times \left ( - 2 \right ) = 0.03 x - 0.34$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 10 } } } + 0.1 \times \left ( - 2 \right ) = 0.03 x - 0.34$
$\dfrac { x } { 10 } + \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = 0.03 x - 0.34$
$ $ Multiply $ 0.1 $ and $ - 2$
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } = 0.03 x - 0.34$
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } = 0.03 x - 0.34$
$ $ Convert decimals to fractions $ $
$\dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } } = 0.03 x - 0.34$
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \color{#FF6800}{ 0.03 } \color{#FF6800}{ x } - 0.34$
$ $ Calculate the multiplication expression $ $
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } } { \color{#FF6800}{ 100 } } } - 0.34$
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \dfrac { 3 x } { 100 } \color{#FF6800}{ - } \color{#FF6800}{ 0.34 }$
$ $ Convert decimals to fractions $ $
$\dfrac { x } { 10 } - \dfrac { 1 } { 5 } = \dfrac { 3 x } { 100 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 17 } } { \color{#FF6800}{ 50 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 10 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } } { \color{#FF6800}{ 100 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 17 } } { \color{#FF6800}{ 50 } } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 20 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 34 }$
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 20 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 34 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 34 } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = - 34 + 20$
$ $ Organize the expression $ $
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = - 34 + 20$
$7 x = \color{#FF6800}{ - } \color{#FF6800}{ 34 } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
$ $ Add $ - 34 $ and $ 20$
$7 x = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture