Calculator search results

Formula
Convert decimals to fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$0.1 \dot{ 2 } \dot{ 9 }$
$\dfrac { 64 } { 495 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 0.1 \dot{ 2 } \dot{ 9 } }$
$ $ Set the repeating decimal number to x $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 0.1 \dot{ 2 } \dot{ 9 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 0.1 \dot{ 2 } \dot{ 9 } }$
$ $ Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number $ $
$\begin{cases} \color{#FF6800}{ 1000 } \color{#FF6800}{ x } = \color{#FF6800}{ 129. \dot{ 2 } \dot{ 9 } } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } = \color{#FF6800}{ 1. \dot{ 2 } \dot{ 9 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 1000 } \color{#FF6800}{ x } = \color{#FF6800}{ 129. \dot{ 2 } \dot{ 9 } } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } = \color{#FF6800}{ 1. \dot{ 2 } \dot{ 9 } } \end{cases}$
$ $ Since the prime number part of the right side of the two expressions is the same, only the integer part remains $ $
$\color{#FF6800}{ 990 } \color{#FF6800}{ x } = \color{#FF6800}{ 128 }$
$\color{#FF6800}{ 990 } \color{#FF6800}{ x } = \color{#FF6800}{ 128 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 64 } { 495 } }$
Solution search results
search-thumbnail-$\sqrt{0289} $ $0.121$ then Find the Value ofx $xP$ 
$af$ $1yx$ $z$
7th-9th grade
Algebra
search-thumbnail-
Fraction Decimal form 
$\dfrac {1} {9}$ $0.1111$ $..$ 
$→$ $0.3333...$ 
$\dfrac {7} {9}$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo