Calculator search results
Formula
Convert decimals to fractions
Answer
See the solving process
$0. \dot{ 9 } \dot{ 3 }$
$\dfrac { 31 } { 33 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 0. \dot{ 9 } \dot{ 3 } }$
$ $ Set the repeating decimal number to x $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 0. \dot{ 9 } \dot{ 3 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 0. \dot{ 9 } \dot{ 3 } }$
$ $ Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number $ $
$\begin{cases} \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 93. \dot{ 9 } \dot{ 3 } } \\ \color{#FF6800}{ 1 } \color{#FF6800}{ x } = \color{#FF6800}{ 0. \dot{ 9 } \dot{ 3 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 100 } \color{#FF6800}{ x } = \color{#FF6800}{ 93. \dot{ 9 } \dot{ 3 } } \\ \color{#FF6800}{ 1 } \color{#FF6800}{ x } = \color{#FF6800}{ 0. \dot{ 9 } \dot{ 3 } } \end{cases}$
$ $ Since the prime number part of the right side of the two expressions is the same, only the integer part remains $ $
$\color{#FF6800}{ 99 } \color{#FF6800}{ x } = \color{#FF6800}{ 93 }$
$\color{#FF6800}{ 99 } \color{#FF6800}{ x } = \color{#FF6800}{ 93 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 31 } { 33 } }$
Solution search results
7th-9th grade
Other
Check solution
Economics & Finance
Check solution
Algebra
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture