# Calculator search results

Formula
Expand the expression
$-x- [ 2y- \{ 9x-5y- \left( 3x-y \right) \} ]$
$5 x - 6 y$
Organize polynomials
$- x - \left ( 2 y - \left ( 9 x - 5 y \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$- x - \left ( 2 y - \left ( 9 x - 5 y \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + \color{#FF6800}{ y } \right ) \right )$
$- x - \left ( 2 y - \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \right )$
 Organize the similar terms 
$- x - \left ( 2 y - \left ( \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } \right ) \right )$
$- x - \left ( 2 y - \left ( \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } + \left ( - 5 + 1 \right ) y \right ) \right )$
 Arrange the constant term 
$- x - \left ( 2 y - \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } + \left ( - 5 + 1 \right ) y \right ) \right )$
$- x - \left ( 2 y - \left ( 6 x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } \right ) \right )$
 Arrange the constant term 
$- x - \left ( 2 y - \left ( 6 x \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \right ) \right )$
$- x - \left ( 2 y \color{#FF6800}{ - } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$- x - \left ( 2 y \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } + \color{#FF6800}{ 4 } \color{#FF6800}{ y } \right )$
$- x - \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \right )$
 Organize the similar terms 
$- x - \left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
$- x - \left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } - 6 x \right )$
 Arrange the constant term 
$- x - \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ y } - 6 x \right )$
$- x - \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
 Sort the polynomial expressions in descending order 
$- x - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ y } \right )$
$- x \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ y } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$- x + \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ y }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ y }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } - 6 y$
 Arrange the constant term 
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } - 6 y$
Solution search results