qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$-x ^{ 2 } +y ^{ 2 }$
$- \left ( x - y \right ) \left ( x + y \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Factorize to use the polynomial formula of sum and difference $ $
$\left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
$\left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( y - x \right )$
$ $ Organize the expression $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \left ( y - x \right )$
$\left ( x + y \right ) \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
$ $ Organize the expression $ $
$\left ( x + y \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
$\left ( x + y \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
$ $ Bind the expressions with the common factor $ - 1$
$\left ( x + y \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \right )$
$ $ Sort the factors $ $
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
Solution search results
search-thumbnail-$i\right)$ $y^{3}+y^{2}-x^{2}+y$
7th-9th grade
Other
search-thumbnail-$14.$ If $x+y+z=0$ then $\dfrac {1} {x^{2}+y^{2}-x^{2}}+\dfrac {1} {y^{2}+x^{2}-x^{2}}+\dfrac {1} {x^{2}+x^{2}-y^{2}}$ is equal to 
$x+y+z=0$ edd $\dfrac {1} {x^{2}+y^{2}-x^{2}}+\dfrac {1} {y^{2}+x^{2}-x^{2}}+\dfrac {1} {x^{2}+x^{2}-y^{2}}$ 
$\left(A\right)$ $→1$ $\left(B\right)$ $1$ $\left($ (C) $\right)$ $2$ $0$
10th-13th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo