$- 5 x + 4 = \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$ $ Multiply each term in parentheses by $ 3$
$- 5 x + 4 = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 }$
$- 5 x + 4 = 3 x + \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 }$
$ $ Multiply $ 3 $ and $ 4$
$- 5 x + 4 = 3 x + \color{#FF6800}{ 12 }$
$- 5 x + 4 = \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 12$
$ $ Move the variable to the left-hand side and change the symbol $ $
$- 5 x + 4 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 12$
$- 5 x \color{#FF6800}{ + } \color{#FF6800}{ 4 } - 3 x = 12$
$ $ Move the constant to the right side and change the sign $ $
$- 5 x - 3 x = 12 \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 12 - 4$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } = 12 - 4$
$- 8 x = \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Subtract $ 4 $ from $ 12$
$- 8 x = \color{#FF6800}{ 8 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } = \color{#FF6800}{ 8 }$
$ $ Change the sign of both sides of the equation $ $
$8 x = - 8$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$