# Calculator search results

Formula
Find the sum or difference of the fractions
$-5 \dfrac{ 7 }{ 20 } +3 \dfrac{ 11 }{ 20 }$
$- \dfrac { 9 } { 5 }$
Find the sum or difference of the fractions
$\color{#FF6800}{ - } \color{#FF6800}{ 5 \dfrac { 7 } { 20 } } + 3 \dfrac { 11 } { 20 }$
 Convert mixed number into improper fraction 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 107 } { 20 } } + 3 \dfrac { 11 } { 20 }$
$- \dfrac { 107 } { 20 } + \color{#FF6800}{ 3 \dfrac { 11 } { 20 } }$
 Convert mixed number into improper fraction 
$- \dfrac { 107 } { 20 } + \color{#FF6800}{ \dfrac { 71 } { 20 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 107 } { 20 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 71 } { 20 } }$
 Since the denominator is the same as $20$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { - 107 + 71 } { 20 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 107 } \color{#FF6800}{ + } \color{#FF6800}{ 71 } } { 20 }$
 Add $- 107$ and $71$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 36 } } { 20 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 36 } } { 20 }$
 Move the minus sign to the front of the fraction 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 36 } { 20 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 36 } { 20 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 5 } }$
Solution search results