# Calculator search results

Formula
Expand the expression
Factorize the expression
$-4x \left( 3x+8 \right) -3 \left( x ^{ 2 } +4x+1 \right)$
$- 15 x ^ { 2 } - 44 x - 3$
Organize polynomials
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) - 3 \left ( x ^ { 2 } + 4 x + 1 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ x } - 3 \left ( x ^ { 2 } + 4 x + 1 \right )$
$- 12 x ^ { 2 } - 32 x \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Organize the expression with the distributive law 
$- 12 x ^ { 2 } - 32 x \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 32 - 12 \right ) x - 3$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 32 - 12 \right ) x - 3$
$- 15 x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ x } - 3$
 Arrange the constant term 
$- 15 x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 44 } \color{#FF6800}{ x } - 3$
$- \left ( 15 x ^ { 2 } + 44 x + 3 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 44 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 44 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
Solution search results