$- 3 x - 4 < \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x }$
$ $ Organize the expression $ $
$- 3 x - 4 < \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 }$
$- 3 x - 4 < \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 8$
$ $ Move the variable to the left-hand side and change the symbol $ $
$- 3 x - 4 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } < 8$
$- 3 x \color{#FF6800}{ - } \color{#FF6800}{ 4 } - 3 x < 8$
$ $ Move the constant to the right side and change the sign $ $
$- 3 x - 3 x < 8 \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } < 8 + 4$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } < 8 + 4$
$- 6 x < \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$ $ Add $ 8 $ and $ 4$
$- 6 x < \color{#FF6800}{ 12 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } < \color{#FF6800}{ 12 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$6 x > - 12$
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 2 }$