Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$-3x- [ 5x+2 \{ x- \left( 3x+1 \right) \} ]$
$- 4 x + 2$
Organize polynomials
$- 3 x - \left ( 5 x + 2 \left ( x \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$- 3 x - \left ( 5 x + 2 \left ( x \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
$- 3 x - \left ( 5 x + 2 \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
 Organize the similar terms 
$- 3 x - \left ( 5 x + 2 \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
$- 3 x - \left ( 5 x + 2 \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } - 1 \right ) \right )$
 Arrange the constant term 
$- 3 x - \left ( 5 x + 2 \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 1 \right ) \right )$
$- 3 x - \left ( 5 x + \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
 Organize the expression with the distributive law 
$- 3 x - \left ( 5 x \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$- 3 x - \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Organize the similar terms 
$- 3 x - \left ( \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$- 3 x - \left ( \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } - 2 \right )$
 Organize the mononomial expression 
$- 3 x - \left ( \color{#FF6800}{ x } - 2 \right )$
$- 3 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$- 3 x \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + 2$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + 2$
$- 2 \left ( 2 x - 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \right ) \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
 Bind the expressions with the common factor $- 2$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture