qanda-logo
search-icon
Symbol

Calculator search results

Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$- 7 x ^ { 2 } - 8 x y$
Organize polynomials
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right ) - \left ( x - y \right ) \left ( - 2 x \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ y } - \left ( x - y \right ) \left ( - 2 x \right )$
$- 9 x ^ { 2 } - 6 x y \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( - 2 x \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$- 9 x ^ { 2 } - 6 x y + \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \left ( - 2 x \right )$
$- 9 x ^ { 2 } - 6 x y + \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$ $ Organize the expression with the distributive law $ $
$- 9 x ^ { 2 } - 6 x y + \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 6 - 2 \right ) x y$
$ $ Arrange the constant term $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 6 - 2 \right ) x y$
$- 7 x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y }$
$ $ Arrange the constant term $ $
$- 7 x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
$- x \left ( 7 x + 8 y \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$ $ Expand the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
$\color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
$ $ Tie a common factor $ $
$\color{#FF6800}{ - } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture