Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$-3 ^{ 2 } \times \left( -1 \right) ^{ 3 } \times \left( +2 \right) ^{ 2 }$
$36$
Calculate the value
$- \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \left ( - 1 \right ) ^ { 3 } \times 2 ^ { 2 }$
$ $ Calculate power $ $
$- \color{#FF6800}{ 9 } \left ( - 1 \right ) ^ { 3 } \times 2 ^ { 2 }$
$- 9 \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 3 } } \times 2 ^ { 2 }$
$ $ Move the (-) sign forward as it does not disappear if the (-) sign is powered to an odd number of times $ $
$- 9 \times \left ( \color{#FF6800}{ - } 1 ^ { 3 } \right ) \times 2 ^ { 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 }$
$9 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \times 4$
$ $ Multiplying any number by 1 does not change the value $ $
$9 \times 4$
$\color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 }$
$ $ Multiply $ 9 $ and $ 4$
$\color{#FF6800}{ 36 }$
Solution search results
search-thumbnail-$y\right)$ ) $\left(1^{2}+2^{2}-3^{2}\right)\times \left(\dfrac {2} {3}\right)^{3}$ $\div \left(\dfrac {1} {4}\right)^{2}$
7th-9th grade
Other
search-thumbnail-5. Simplify the $f_{o1l0wing:}$ 
$\left(i\right)$ $\left(3^{2}+2^{2}\right)\times \left(\dfrac {1} {2}\right)^{3}$ $\left(ii\right)$ $\left(3^{2}-2^{2}\right)\times \left(\dfrac {2} {3}\longdiv{}3$ 
$\left(i\vec{i} i\right)$ $\left(\dfrac {1} {3}\longdiv{}3$ $-\left(\dfrac {1} {2}\longdiv{}3\right)\div \left(\dfrac {1} {4}\longdiv{}3$ $\left(iv\right)$ $\left(2^{2}+3^{2}-4^{2}\right)\div \left(\dfrac {3} {2}\right)^{2}$ 
$\left(v\right)$ $\left(1^{2}+2^{2}-3^{2}\right)\times \left(\dfrac {2} {3}\right)^{3}$ $\div \left(\dfrac {1} {4}\right)^{2}$
7th-9th grade
Other
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo