Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Calculate the sum or the difference
Answer
See the solving process
$0$
Calculate the sum or the difference
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } + 10 \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$ $ Find the sum of the negative numbers $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 10 } + 10$
$\color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
$ $ Add $ - 10 $ and $ 10$
$\color{#FF6800}{ 0 }$
Solution search results
$Q2\right)$ The slope of a given line $1s^{.}$ $:$ * $4$ $10^{4}$ 8- 6- 2+ 0 $6$ 8 $10$ $-x$ $10$ -8 6 -4 2 21 -4 $-6+$ -8- $107$ $②$ 2 $○$ O $-0.5$ $○$ O $1/2$ $○$ $2/4$ $O$ O $-4/2$
7th-9th grade
Algebra
Check solution
$y$ $--+2$ $--=$ TTT $x$ $-\dfrac {-1} {\pi }2-$ $2$ $-1^{-}$ $4$ $-+-4$ $-4-$ $--$ $-+10$ $--$ $-$ $-+-$ $-+12$ $--+14$ $----\dfrac {1} {T}-$ $1$ $--F-+$ $--116$ $-=$
7th-9th grade
Algebra
Check solution
$y=-x^{2}+10-12$ $O$ $x=5$ $O$ $y=-5$ $O$ $y=5$ $x=-5$
10th-13th grade
Algebra
Check solution
$0.$ $15\times 2+10-8+20=15$ $\left(A\right)$ $-$ $4$ $t$ $\left($ (B) $B\right)$ $+$ 3 $x$ $\left(C\right)$ $-$ $+3\pi $ $4$ (D) $x$
10th-13th grade
Other
Check solution
$5$ $15\times 2+10-8+20=15$ $\left(A\right)$ $-\bar{3} $ $+$ $\left(B\right)$ $+$ R $x$ $\left(C\right)$ $+$ $+$ $\left(D\right)$ $x$ 3
10th-13th grade
Other
Check solution
$n_{15\times 4+2+10-8}$ - Which part of this expression should be simplified first while simplifying this expression?" $O$ $2+10$ $O$ $4+3$ $15\times 4$ $O$ $10.8$
7th-9th grade
Algebra
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com