# Calculator search results

Formula
Expand the expression
Factorize the expression
$-11+4 \left( b+2c \right) +5-7b$
$- 3 b + 8 c - 6$
Organize polynomials
$- 11 + \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ c } \right ) + 5 - 7 b$
 Organize the expression with the distributive law 
$- 11 + \color{#FF6800}{ 4 } \color{#FF6800}{ b } + \color{#FF6800}{ 8 } \color{#FF6800}{ c } + 5 - 7 b$
$\color{#FF6800}{ - } \color{#FF6800}{ 11 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ b }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 11 } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \right ) \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ c }$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 11 } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) + \left ( 4 - 7 \right ) b + 8 c$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 6 } + \left ( 4 - 7 \right ) b + 8 c$
$- 6 + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \right ) \color{#FF6800}{ b } + 8 c$
 Arrange the constant term 
$- 6 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } + 8 c$
$\color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ c }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$- \left ( 3 b - 8 c + 6 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ - } \color{#FF6800}{ 11 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ c } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ b }$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right )$
Solution search results