Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$- \left( x-5 \right) -7 \left( x-2 \right)$
$- 8 x + 19$
Organize polynomials
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) - 7 \left ( x - 2 \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$\color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 5 } - 7 \left ( x - 2 \right )$
$- x + 5 \color{#FF6800}{ - } \color{#FF6800}{ 7 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Organize the expression with the distributive law 
$- x + 5 \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } + \color{#FF6800}{ 14 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 14 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 14 } \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \right ) \color{#FF6800}{ x } + \left ( 5 + 14 \right )$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } + \left ( 5 + 14 \right )$
$- 8 x + \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 14 } \right )$
 Arrange the constant term 
$- 8 x + \color{#FF6800}{ 19 }$
$- \left ( 8 x - 19 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 7 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 19 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 19 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 19 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture