Calculator search results

Formula
Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$- \left ( x - 3 \right ) \leq 3 \left ( x - 1 \right )$
$- \left ( x - 3 \right ) \leq 3 \left ( x - 1 \right )$
Solution of inequality
$x \geq \dfrac { 3 } { 2 }$
$- \left( x-3 \right) \leq 3 \left( x-1 \right)$
$x \geq \dfrac { 3 } { 2 }$
$ $ Solve a solution to $ x$
$- \left ( x - 3 \right ) \leq \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Multiply each term in parentheses by $ 3$
$- \left ( x - 3 \right ) \leq \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \leq 3 x - 3$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \leq 3 x - 3$
$- x + 3 \leq \color{#FF6800}{ 3 } \color{#FF6800}{ x } - \color{#FF6800}{ 3 }$
$ $ Move the variable to the left-hand side and change the symbol $ $
$- x + 3 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq - 3$
$- x \color{#FF6800}{ + } \color{#FF6800}{ 3 } - 3 x \leq - 3$
$ $ Move the constant to the right side and change the sign $ $
$- x - 3 x \leq - 3 \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq - 3 - 3$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \leq - 3 - 3$
$- 4 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$ $ Find the sum of the negative numbers $ $
$- 4 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$4 x \geq 6$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \geq \color{#FF6800}{ 6 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } \geq \color{#FF6800}{ \dfrac { 3 } { 2 } }$
$ $ 그래프 보기 $ $
Inequality
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo