$- \dfrac { 5 } { \color{#FF6800}{ 8 } } + \dfrac { 27 } { \color{#FF6800}{ 2 } }$
$ $ The smallest common multiple in denominator is $ 8$
$- \dfrac { 5 } { \color{#FF6800}{ 8 } } + \dfrac { 27 } { \color{#FF6800}{ 2 } }$
$- \dfrac { 5 } { 8 } + \dfrac { 27 } { 2 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$- \dfrac { 5 } { 8 } + \dfrac { 27 \times \color{#FF6800}{ 4 } } { 2 \times \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 8 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 27 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 8 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 108 } } { \color{#FF6800}{ 8 } } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 8 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 108 } } { \color{#FF6800}{ 8 } } }$
$ $ Since the denominator is the same as $ 8 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 108 } } { \color{#FF6800}{ 8 } } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 108 } } { 8 }$
$ $ Add $ - 5 $ and $ 108$
$\dfrac { \color{#FF6800}{ 103 } } { 8 }$