Calculator search results

Formula
Find the sum or difference of the fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$- \dfrac{ 3 }{ 4 } +4 \dfrac{ 5 }{ 12 }$
$\dfrac { 11 } { 3 }$
Find the sum or difference of the fractions
$- \dfrac { 3 } { 4 } + \color{#FF6800}{ 4 \dfrac { 5 } { 12 } }$
$ $ Convert mixed number into improper fraction $ $
$- \dfrac { 3 } { 4 } + \color{#FF6800}{ \dfrac { 53 } { 12 } }$
$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 53 } { \color{#FF6800}{ 12 } }$
$ $ The smallest common multiple in denominator is $ 12$
$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 53 } { \color{#FF6800}{ 12 } }$
$- \dfrac { 3 } { 4 } + \dfrac { 53 } { 12 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$- \dfrac { 3 \times \color{#FF6800}{ 3 } } { 4 \times \color{#FF6800}{ 3 } } + \dfrac { 53 } { 12 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 \times 3 } { 4 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 53 } { 12 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 53 } { 12 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 53 } { 12 } }$
$ $ Since the denominator is the same as $ 12 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { - 9 + 53 } { 12 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 53 } } { 12 }$
$ $ Add $ - 9 $ and $ 53$
$\dfrac { \color{#FF6800}{ 44 } } { 12 }$
$\color{#FF6800}{ \dfrac { 44 } { 12 } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { 11 } { 3 } }$
Solution search results
search-thumbnail-$17$ 
C. $\dfrac {3} {8}+\left(3\dfrac {1} {2}-\dfrac {1} {3}\right)\times \dfrac {7} {8}\div 2\dfrac {1} {4}$ 
d. $\dfrac {1} {3}+\dfrac {2} {5}\times 3\dfrac {3} {4}$ 
$105\div 350f\dfrac {1} {3}+\dfrac {2} {5}$ $\dfrac {3} {4}+\dfrac {2} {3}\times \dfrac {5} {12}\div \dfrac {5} {6}-\dfrac {1} {8}$ 
e. f. $\dfrac {3} {4}+\dfrac {1} {3}\times \dfrac {5} {8}\div \dfrac {5} {12}-\dfrac {1} {8}$
7th-9th grade
Algebra
search-thumbnail-$3$ $3$ $4$ 
e. $\dfrac {3} {4}+\dfrac {2} {3}\times \dfrac {5} {12}\div \dfrac {5} {6}-\dfrac {1} {8}$ f. $\dfrac {3} {4}+\dfrac {1} {3}\times \dfrac {5} {8}\div \dfrac {5} {12}-\dfrac {1} {8}$
7th-9th grade
Algebra
search-thumbnail-$1\dfrac {5} {12}of\left(\left(\dfrac {35} {12}-\left(\dfrac {3} {4}+1\dfrac {1} {3}\right)\right)\div 1\dfrac {5} {12}\right)$
1st-6th grade
Other
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo