Calculator search results

Formula
Find the sum or difference of the fractions
$- \dfrac{ 3 }{ 4 } +4 \dfrac{ 5 }{ 12 }$
$\dfrac { 11 } { 3 }$
Find the sum or difference of the fractions
$- \dfrac { 3 } { 4 } + \color{#FF6800}{ 4 \dfrac { 5 } { 12 } }$
 Convert mixed number into improper fraction 
$- \dfrac { 3 } { 4 } + \color{#FF6800}{ \dfrac { 53 } { 12 } }$
$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 53 } { \color{#FF6800}{ 12 } }$
 The smallest common multiple in denominator is $12$
$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 53 } { \color{#FF6800}{ 12 } }$
$- \dfrac { 3 } { 4 } + \dfrac { 53 } { 12 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$- \dfrac { 3 \times \color{#FF6800}{ 3 } } { 4 \times \color{#FF6800}{ 3 } } + \dfrac { 53 } { 12 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 \times 3 } { 4 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 53 } { 12 } }$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 53 } { 12 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 53 } { 12 } }$
 Since the denominator is the same as $12$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { - 9 + 53 } { 12 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 53 } } { 12 }$
 Add $- 9$ and $53$
$\dfrac { \color{#FF6800}{ 44 } } { 12 }$
$\color{#FF6800}{ \dfrac { 44 } { 12 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ \dfrac { 11 } { 3 } }$
Solution search results