Symbol

# Calculator search results

Formula
Solve the equation
Graph
$y = - \dfrac { 1 } { 5 } \left ( x - 2 \right )$
$y = - 0.3 \left ( x - 1 \right )$
$x$Intercept
$\left ( 2 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 2 } { 5 } \right )$
$x$Intercept
$\left ( 1 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 3 } { 10 } \right )$
$- \dfrac{ 1 }{ 5 } \left( x-2 \right) = -0.3 \left( x-1 \right)$
$x = - 1$
 Solve a solution to $x$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = \color{#FF6800}{ - } \color{#FF6800}{ 0.3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = \color{#FF6800}{ - } \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.3 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } \color{#FF6800}{ x } - \dfrac { 1 } { 5 } \times \left ( - 2 \right ) = - 0.3 x + 0.3$
 Calculate the multiplication expression 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 5 } } - \dfrac { 1 } { 5 } \times \left ( - 2 \right ) = - 0.3 x + 0.3$
$- \dfrac { x } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = - 0.3 x + 0.3$
 Calculate the product of rational numbers 
$- \dfrac { x } { 5 } + \color{#FF6800}{ \dfrac { 2 } { 5 } } = - 0.3 x + 0.3$
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = \color{#FF6800}{ - } \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } + 0.3$
 Calculate the multiplication expression 
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 10 } } + 0.3$
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = - \dfrac { 3 x } { 10 } + \color{#FF6800}{ 0.3 }$
 Convert decimals to fractions 
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = - \dfrac { 3 x } { 10 } + \color{#FF6800}{ \dfrac { 3 } { 10 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 } { 5 } } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 10 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 } { 10 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 3 - 4$
 Organize the expression 
$\color{#FF6800}{ x } = 3 - 4$
$x = \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 Subtract $4$ from $3$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture