$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = \color{#FF6800}{ - } \color{#FF6800}{ 0.3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = \color{#FF6800}{ - } \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.3 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ x } - \dfrac { 1 } { 5 } \times \left ( - 2 \right ) = - 0.3 x + 0.3$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } } - \dfrac { 1 } { 5 } \times \left ( - 2 \right ) = - 0.3 x + 0.3$
$- \dfrac { x } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) = - 0.3 x + 0.3$
$ $ Calculate the product of rational numbers $ $
$- \dfrac { x } { 5 } + \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 5 } } } = - 0.3 x + 0.3$
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = \color{#FF6800}{ - } \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } + 0.3$
$ $ Calculate the multiplication expression $ $
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } } { \color{#FF6800}{ 10 } } } + 0.3$
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = - \dfrac { 3 x } { 10 } + \color{#FF6800}{ 0.3 }$
$ $ Convert decimals to fractions $ $
$- \dfrac { x } { 5 } + \dfrac { 2 } { 5 } = - \dfrac { 3 x } { 10 } + \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 10 } } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 5 } } } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } } { \color{#FF6800}{ 10 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 10 } } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 3 - 4$
$ $ Organize the expression $ $
$\color{#FF6800}{ x } = 3 - 4$
$x = \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Subtract $ 4 $ from $ 3$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$