$- \dfrac { 1 } { \color{#FF6800}{ 2 } } - \dfrac { 1 } { \color{#FF6800}{ 4 } } + \dfrac { 2 } { \color{#FF6800}{ 3 } }$
$ $ The smallest common multiple in denominator is $ 12$
$- \dfrac { 1 } { \color{#FF6800}{ 2 } } - \dfrac { 1 } { \color{#FF6800}{ 4 } } + \dfrac { 2 } { \color{#FF6800}{ 3 } }$
$- \dfrac { 1 } { 2 } - \dfrac { 1 } { 4 } + \dfrac { 2 } { 3 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$- \dfrac { 1 \times \color{#FF6800}{ 6 } } { 2 \times \color{#FF6800}{ 6 } } - \dfrac { 1 \times \color{#FF6800}{ 3 } } { 4 \times \color{#FF6800}{ 3 } } + \dfrac { 2 \times \color{#FF6800}{ 4 } } { 3 \times \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 \times 6 } { 2 \times 6 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 \times 3 } { 4 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 \times 4 } { 3 \times 4 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 6 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 8 } { 12 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 6 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 8 } { 12 } }$
$ $ Since the denominator is the same as $ 12 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { - 6 - 3 + 8 } { 12 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } } { 12 }$
$ $ Calculate the sum or the difference $ $
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } { 12 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } { 12 }$
$ $ Move the minus sign to the front of the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 12 } }$